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A random walk on a sphere consists of a chain of random steps for which all directions from the
starting point are equally probable, while the length « of the step is either fixed or subject to a given
probability distribution p(a). The discussion allows the fixed length « or given distribution p(«),
to vary from one step of the chain to another. A simple formal solution is obtained for the dis-
tribution of the moving point after any random walk; the simplicity depends on the fact that the
individual steps commute and therefore have common eigenfunctions. Results are derived on the
convergence of the eigenfunction expansion and on the asymptotic behaviour after a large number
of random steps. The limiting case of diffusion is discussed in some detail and compared with the
distribution propounded by Fisher (1953).

The corresponding problem of random walk on a general Riemannian manifold is also attacked.
It is shown that commutability does not hold in general, but that it does hold in completely har-
monic spaces and in some others. In commutative spaces, complete analogy with the method
employed for a sphere is found.

1. STATEMENT OF THE PROBLEMS

Suppose that a probability distribution is given for the initial position r, of a point on the
surface of a sphere. The point receives a sequence of displacements, taking it to other points
I, T, ... onthe sphere. Each displacementis of angular distance , but is randomly directed
from its starting point. We wish to find the probability distribution p, of r,, and in particular
the asymptotic behaviour of that distribution for large values of #.

The initial distribution may be one of absolute certainty that r, is at Z, the ‘north pole’
of the sphere. The problem in this case is contained in the general problem, either as a
particular case or as a limiting case: and the solution of the particular problem will give
by superposition the solution of the general problem.

The problem may be generalized in three ways.

(i) The initial distribution is given by a probability density p,(r), the probability that r,
is in a solid angle dw about r being p,(r) dw. This density satisfies the conditions

po®) =0, [ [po(r)do—1. (1)

1 These conditions we state here for the case of finite density p,. They require restatement for singular
distributions.
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318 P. H. ROBERTS AND H. D. URSELL

The first extension is to abandon conditions (1) and their analogues for singular distribu-
tions. The distribution may then be called a charge distribution, the net total charge having
any value, including zero. It is natural to assume that the total charge (without regard to
sign) is finite,

Q= [ [Ipo()] do <o, @)

which, like (1), requires restatement for singular distributions.

This ‘charge’ generalization leaves quite unaffected the formal process of solution given
in §§ 2, 3: indeed, the generalization is forced on to us by the method. Aslong as we retain
the condition (2), we can write

Po = Po—P0s  |Po] = Po+P0s (3)

so that py, py are distributions everywhere non-negative: the corresponding total charges

Q= [[rado, Q5= [ [ st
are both finite, since Qo = Q@+ Q5

and so py, pg differ from probability distributions only by the constant factors @, @g. Thus
a random walk of a charge distribution is a linear combination of two random walks of
probability distributions, so that the generalization—subject to (2)—cannot produce any
substantial difference in the theory. Evidently

Q= [[lnldo = [[1ri—ri|do
< [[i+omdo= [ [pido+ [ [p1do
= Uﬂédwr”ﬂé do = Q,,

so that , = [[|p,| dw decreases as ¢ increases.

(ii) The second generalization allows the steps to be of different length: the displacement
from r,_, to r, is randomly directed from r,_; but is of angular distance «, which may vary
with £ This produces little formal change: but asymptotic propertiest are affected if sine,
decays away too fast.

(iif) The third generalization replaces the step, random in direction but of fixed angular
distance «, by a step still random in direction but of an angular magnitude « which is itself
statistically distributed according to some law. In such a distribution let p(«) be the chance
that the displacement is of angular distance < «. Then p(a) is defined and monotonically
increasing in the range 0 < a < 7, and

0<p(0) <p(m) = 1.

This generalization again produces little formal change: but asymptotic properties, and the
analytic character of the solution for finite values of 7, may be affected if the distribution of
a shows too much concentration on small values of « or on values of « near to 7.

T We shall use ‘asymptotic’ in relation to properties as ¢ - co. ‘Convergence’, on the other hand, will
refer to the expansions in eigenfunctions.
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RANDOM WALK ON A SPHERE 319

The two generalizations may be combined, i.e. we may allow the statistical distribution
p,(2) of the angular magnitude « of the ¢th step to vary with £

We may include as a limiting case a Brownian motion (Perrin 1925; Klein 1952): here
the steps are infinitesimal, but their number is correspondingly increased. The difficulties
(connected with asymptotic properties and convergence) at which we have hinted disappear
in this case. The distribution obtained in this manner is not the same as one proposed by
Fisher (1953) for dispersion on a sphere, but a detailed comparison reveals that the difference
is small and, in practice, unimportant. This is fortunate, since the Brownian, or diffusion,
distribution, while it may be theoretically correct, is analytically cumbersome, whereas
Fisher’s distribution is ideally suited for a statistical study.

All these problems are discussed in §§ 2, 3 and 4 below. The extension of this work to the
case of a hypersphere of any number of dimensions would present no difficulty. However,
in §5, we attempt the generalization to Riemannian manifolds. There is exact analogy if
the space is of a type which we call commutative; that is, if any two random steps of any
length commute. In particular, we show that a completely harmonic space is commutative
and that the product of two commutative spaces is commutative. Commutative spaces
are not necessarily harmonic and, in fact, we give an example of a closed three-dimensional
commutative manifold which is not of constant curvature (and is not, therefore, harmonic;
see Copson & Ruse 1940). It can be proved, however, that all two-dimensional commu-
tative manifolds are of constant curvature.

2. THE EIGENFUNCTIONS AND EIGENVALUES: THE FORMAL SOLUTION FOR A SPHERE

We take as basic the original problem with the first extension, and to avoid complexities
of notation we suppose that the initial distribution is one of finite and continuous density
po(r,). Let p,(r,) be the distribution density after # steps. Then the law of formation is

p(r) = averagep,_(r’). (4)
rr=o
For the points r’ appearing in this average are precisely those from which r can be reached
in one further step. From symmetry, (4) holds apart from a possible factor independent
of r, and that factor must be unity to give conservation of total (net) ‘charge’ in the case
in which p,_, is a uniform distribution.

Equation (4) makes p, a linear functional of p,_ ;, and hence we have the principle of

superposition: if

pt—l - zpt—l,m
(n)
then P = El)t,n:
(n)

wherep, ,isdetermined from p,_, , by the same law (4). We look therefore for the character-
istic values A and characteristic functions ¢, (r) of the problem, i.e. solutions of the equation

average g,(r') = Ag,(r). (5)
I'r=o
The solutions are immediately to hand: if S,(r) is a surface spherical harmonic of order
n then averageS,(r’) = P,(cosa) S,(r). (6)
Fi=a

39-2
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320 P. H. ROBERTS AND H. D. URSELL

To see this, take r as pole of spherical co-ordinates (¢, ) for r’. Then §,(r’) is a linear
combination of the zonal harmonic P,(cos#) and the tesseral harmonics

P™(cosl) cosmy, P{™(cosf)sinmy.
The zonal harmonic satisfies (6), each side having the value P,(cosa): and a tesseral har-

monic satisfies it, each side vanishing. Hence the general S, also satisfies (6).
The characteristic values are therefore the numbers
A, = P,(cosa), (7)
and the characteristic functions corresponding to A, are allt the surface harmonics S, of
order n. Since the surface harmonics form a complete system there are no other character-
istic values.
The characteristic functions do not dependf on the value of a. In consequence the same

characteristic functions S, arise in the third extension of the problem, but with character-
istic values o

A, = JOPn(cos %) dp(a). (8)

And the second extension also leaves the characteristic functions unchanged,f although
the A, will then vary from step to step.
To derive the formal solution, expand p,(r) in a series of spherical harmonics,

po(T) = S, (). (9)
The series may be developed from the distribution by standard methods (cf. equation (28)):
it need not converge in the strict sense, but from it the distribution may be determined
uniquely. This is true even for singular distributions of finite total charge Q,. If the dis-
tribution is one of finite continuous density p,, then the series is certainly summable by the
method of Abel and Borel.
For a problem without the second extension we get

pl(r) = E/InSn<r):
and in general p,(r) = 2ZALS, (1), (10)
with the same harmonic S, throughout. For a problem with the second extension} we get
pr) = ZA,,S,(r), (11)

t For a given n, there are (2n+1) linearly independent harmonics S, of order n. Thus the eigenvalue
problem is inherently degenerate, A, being a (2r+1)-fold eigenvalue. In general there are no further degen-
eracies, the numbers A, =1, A}, A,, ... being distinct: the only characteristic functions are then the S, of
various orders. But it may happen that A, = A, for a particular p(2) and two particular integers m, n. If
so, there will be extra characteristic functions of the form §,,+S,. In this way ke characteristic functions’
do depend on the value of « in (7), or on the p(«) in (8); but there is no harm in ignoring such accidental
degeneracies.

1 The distribution after two steps of length «, # from the initial distribution (17) is given by a result of
Dougall (1919)

(2n+1)

5:; 22 P (cos @) P,(cos B) P,(cos 0)

= ~(§177—)~2 [sin 4(ax+f+0) sin }(a+F—0) sin (O +a—f) sin (0 —a+7)]3,

if a spherical triangle can be drawn with sides «, £, 6, and zero otherwise. Whence, by the addition theorem
for Legendre polynomials, the distribution after three steps can be expressed as a complete elliptic integral
of the first kind. That the harmonic series for any number of steps is zero in inaccessible regions can be
proved by induction.
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RANDOM WALK ON A SPHERE 321
with Ay= T2y, (12)
k=1
and, with the third extension as well,
A = [ P(cosa) dpy(a). (13)
0

For the Brownian problem (diffusion) we consider a large number N of steps, each of
small angular distance . We have

£,(1) =1, P,1)=in(n+1),
A, = P,(cosa) ~ P,(1—1a?)
~ 1—1n(n+1)a? x e tnnthe?,
Hence py = Ze itV g (14)
where V'is the variance of the corresponding plane motion,
V= 22 (15)

For equal infinitesimal steps, we should have V' = Nu2. For a Brownian problem with the
third extension we should get

V=3 [adp,a), (16)
k=1J0

although these distinctions have no real significance for a genuine diffusion.
From an initial distribution of absolute certainty that the point is at the north pole, which

has the (formal) expansion ont1

loO:2 47

P (cost), (17)

¢ being the angular distance from the north pole, a diffusion of total variance V produces

the final distribution on 41

p=2 4

etV P (cosf). (18)

This would appear to be the correct analogue on the sphere of a symmetrical Gaussian
distribution in the plane.
Fisher (1953) has studied the distribution

K
dp(e) = 2sinh «

e<e*%sin a da. (19)

If this be regarded as a single step in a random walk, it gives (Watson 1944, pp. 50, 77, 79)

Ay = L4 3 (€) Iy (k), (20)
2n-+1

/ln+1 = An-l_ Py "/1m (21)

A; = cothk—1/k. (22)

If k is large, the step is small (i.e. the probability is large that « is small) and the variance is

fozzdﬁ(oc) ~ 2/k.
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322 P. H. ROBERTS AND H. D. URSELL
Hence a large number N of such steps gives (14) with V' = 2N/k. In fact it can be shown
directly that, for large «, 1.4(c) L (n+1)
I% (K) 2k ?
whence A, y= A x et DNk,

But it is of more interest to compare a single step of Fisher’s type with a diffusion (14), (18).
The exact analogue of (19) for diffusion is

dp’(a) = [i (n+-1) e~inn+DV P (cos oc):l sin ada, (23)
n=0
and it gives A = e it DV — (1] )Enn+ 1), (24)

We can attempt the comparison referred to by comparing the sequence {A,} with the
sequence {A,}. We may normalize the comparison by imposing the condition

A=A, (25)

so that the first harmonics are damped down in the same way. It then emerges that, while
in each case the higher harmonics are more heavily damped than the lower (i.e. 4,, 4, both
decrease as n increases), this effect is more severe in diffusion than in Fisher’s distribution.
For example, for small « we cant show that

Kﬂ
1.3.5... (2n+1)’

A, =

so that A, is an infinitesimal of higher order than A, as x — 0. Again, for large x we can
ignore the difference between coth « and unity so that, using (21) and (22),

1 3 1
Mml—y, A= 17(1—;) — 3+ 0(),

and, by induction, A, = Ao+ D 4 O (k3),

the error term being positive; cf. equation (24).

Thus Fisher’s distribution (19) imitates the diffusion distribution (23) very accurately
for large « (small V). Since both tend to the uniform distribution as x — 0 (¥ —00) we may
surmise that the discrepancy between them is never very great. This is confirmed by
numerical computations. We may consider a distribution of Fisher’s type p(«, ) to fit a
distribution of the Brownian type p’(«, V) best when the maximum difference between them

K

1
T A= mf_le”” P (p) dp

n_ K 1 extdp
EA = 2 sinh Kf_l (1 —2px 4 x2)

1
f . etrx(l-7)+xr d7-’

_ kK
" 2sinh «
by the substitution 1—2ux+4? = (1—x7)% Hence
1 —r2\n
I

"~ 2sinh k) n!

11 (1~72)"d7(1<" R
~§J“l,w = é) as k—0.
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RANDOM WALK ON A SPHERE 323

is least. The behaviour of this maximum difference as a function of V is shown in figure 1
and we see that, even in the worst case, it barely exceeds 0-02. We also find that the com-
parison (25) is surprisingly accurate. This is illustrated in figure 2 where the full line gives

0-02

0-01

|p(e, &) —p' (2, V)| at best fit

0 05 10
il

Ficure 1. The maximum difference at best fit between the cumulative probability

functions of Fisher’s distribution and the Brownian distribution.

1-0

05

the value of e~ at best fit

0 05 )
etV
Ficure 2. The relationship between x and V for which the cumulative probability functions of

Fisher’s distribution and the Brownian distribution fit best: , from numerical calculations;
————— , from equation (25).
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the value of « at best fit, plotted as a function of V, while the dashed line gives the value of «
implied by equation (25). However, the percentage error made in accepting estimate (25)
exceeds 109, for e~ between 0-8 and 0-9. The function p’(«, V) is shown in table 1.

TABLE 1. THE BROWNIAN FUNCTION FOR A SPHERE

osoe e =01 et=02 et'=03 et'=04 =05 et'=06 cos o e =07 et=08 cosaa e =09

0-9 0-064464 0-080226 0-098708 0-121746 0-152188 0-195161 0-95 0-139390 0-209104 0-975 0-215345

0-8 0-127360 0-156902 0-190974 0-232484 0-285651 0-357412 0-90 0-261310 0-377044 0-950 0-385589

0-7 0-188697 0-230091 0-277035 0-332894 0-402166 0-491434 0-85 0-367708 0-511417 0-925 0-519908

0-6 0-248480 0-299854 0-357123 0-423626 0-503390 0-601362 0-80 0-460341 0-618514 0-900 0-625674

4 05 0-306719 0-366255 0-431464 0-505308 0-590859 0-690838 0-75 0-540791 0-703523 0-875 0-708780

« ;] 104 0-363420 0-429355 0-500284 0-578541 0-665998 0-763050 0-70 0-610481 0-770711 0-850 0-773944
= 03 0-418591 0-489216 0-563802 0-643905 0-730129 0-820786 0-60 0-722555 0-864982 0-825 0-824929
— 0-2 0-472240 0-545898 0-622233 0-701953 0-784468 0-866467 0-50 0-805253 0-922270 0-800 0-864733
< 0-1 0-524373 0-599464 0-675790 0-753218 0-830139 0-902188 0-40 0-865506 0-956360 0-775 0-895738
>-1 >" 0-0 0-575000 0-649972 0-724681 0-798208 0-868175 0-929747 0-30 0-908790 0-976177 0-750 0-919833
O [—1 -0-1 0-624126 0-697484 0-769110 0-837412 0-899520 0-950693 0-20 0-939400 0-987399 0-725 0-938515
m 3 -0-2 0-671760 0-742059 0-809277 0-871295 0-925042 0-966327 0-10 0-960666 0-993569 0-700 0-952964
i = 0-3 0-717909 0-783756 0-845379 0-900301 0-945527 0-977755 0-00 0-975147 0-996850 0-650 0-972691
a8 U -0-4 0-762580 0-822635 0-877609 0-924856 0-961692 0-985901 —0-10 0-984782 0-998530 0-600 0-984319
I O -0-5 0-805781 0-858755 0-906155 0-945363 0-974186 0-991529 —0-20 0-991022 0-999353 0-500 0-995009
F A 0-6 0-847520 0-892174 0-931204 0-962208 0-983593 0-995267 —0-30 0-994937 0-999734 0-400 0-998357
-0-7 0-887804 0-922951 0-952937 0-975756 0-990435 0-997621 —0-40 0-997300 0-999899 0-300 0-999569

-0-8 0-926640 0-951142 0-971531 0-986354 0-995182 0-998996 —0-60 0-999396 0-999990 0-200 0-999885

-0-9 0-964037 0-976806 0-987162 0-994332 0-998249 0-999708 —0-80 0-999926 1-000000 0-000 0999993

From the statistical standpoint, Fisher’s distribution is of great practical utility. The pole
of maximum likelihood is independent of « and its position together with R, the length of
the resultant vector defined by the sample, provide exhaustive estimation. It does not
possess the multiplicative property so characteristic of the plane Gaussian distribution and,
from the abstract point of view, the Brownian distribution, which does, is a true analogue
of the Gaussian distribution. However, exhaustive estimation does not seem to be possible
for the Brownian distribution and, in fact, even the problem of determining the most
likely pole and value of V is one of unprofitable difficulty. It is therefore a matter of some
satisfaction that the agreement between the two distributions is so good. It is known that
conclusions drawn on the hypothesis of a Gaussian distribution are insensitive to small
modifications of it. We may presume, in a like manner, that results deduced on the assump-
tion of Fisher’s distribution would be affected little by the modification necessary to bring
it to Brownian form and that, in practice, we may use Fisher’s distribution even in those

PHILOSOPHICAL
TRANSACTIONS
OF

T rare cases in which we are certain that the dispersion is dominated by a physical mechanism
21 producing small random errors.
—
O H 3. CONVERGENCE
[~ 5 We have in all cases o=1. (26)
= O .
=0 For n > 0, |P(cosa)| <1 if O0<a<m,
W
= <1, (27)

with strictinequality in (27) exceptin certain extreme cases. This fact suggests that, although
(9) may be only a formal expansion, the series (10) or (11) may be strictly convergent after
a few random steps, as (14) is for any V' > 0.

Now s,y =24 f f po() P.(cos 0) do, (28)

PHILOSOPHICAL
TRANSACTIONS
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RANDOM WALK ON A SPHERE 325

. ) . . .
where 0 is the angle rr’, or cos§ = r.r’ if we take the radius of the sphere to be unity and
r, r’ to be the unit vectors drawn from the centre of the sphere to the points on the surface.

From (28), 1S,(r")| < (2n+1) Q,/4m = O(n). (29)

This bound holds also for singular distributions with infinite density, but subject to the
analogue of (2). No better result holds with this generality, as (17) shows: but better results
can be obtained if p, is bounded. For

P (cosa) = : f dz
om )¢ 271, J(1—2zcosa+z2)°

the path C of integration separating the origin from the singularities at z = +-ei*. C'may be
deformed into both sides of each of two radial cuts from +ei* to infinity. This gives

dr
L /[2sin ac(r~— 1)]

=I|L\'J

[Bfeose)| <7 [
J( ) - o (1 +t2)n+1
J (»IZI—) F cos?rfdd
J) [, e
< J i) (30

And (30) easily leads to .S, = O(/n) if p, is bounded.
(a) For our basic case, in which each step is of the same fixed length « (0 <o <),

(30) shows that A, = O(nh) (31)

<

SRR =1IL\'.)

and hence the series for p, is absolutely and uniformly convergent for ¢ > 5.
Next, suppose that the third extension is applied: and that the distribution function p(«)
satisfies a Lipschitz condition at each end of the range,

pla) < Ka?, 1—p(m—a) < Ko?, (32)

with some positive value of §. This is quite a mild condition on p(«), although of course it
is stronger than continuity at « = 0 and o = 7. In (8) we have, by (30),

|P,(cosa)| < min (1, C[/(an)),

C denoting a constant not necessarily the same in all cases. Hence

A, = O(n?) if 8> 1,
A, = O(n-tlogn) if §=1, (33)
A, = O(n?) if §<1.

Thus if & > 1 the series for p, is again absolutely and uniformly convergent for ¢ > 5. For
8 < 1, absolute and uniform convergence may be delayed until 0 > 2, but will be achieved
after a finite number of steps.

40 Vor. 252. A,
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326 P. H. ROBERTS AND H. D. URSELL
If the second extension is applied, the steps satisfying (32) but with different values
81y 09y vevy Oy o

of the order § of the Lipschitz condition, absolute and uniform convergence of the series
for p, is attained as soon as YR R () (34)
where d; is the smaller of §, and 4. In applying this rule, we can ignore any step which does
not satisfy (32) with a positive value of §; in other words we interpret 4, ¢’ for such a step as
zero. This follows at once from (27).

The above, which assumes more than continuity of p(a) at 0 and 7, does not involve any
assumption of continuity between 0 and 7.

(b) We now relax the conditions on p(«), assuming only that

p(a) is continuous at ¢ = 0 and a = 7. (35)
In this case we obtain
A,—~0 as n->o0. (36)

The factors A, may therefore change a non-convergent serics into a convergent one. But
(35) 1s not enough for general results of this nature.

To show this we construct in appendix A a function p(a), continuous in the whole range
from 0 to =, including the endpoints, and increasing monotonically in that range from
0 to 1, for which A > (logn)-! (37-1)
(not for all » but) for an infinity of values of z,

n = nl, 722, cees (37'2)

If we apply ¢ steps of the random walk corresponding to () to the initial distribution (17)

we get o1

pt:‘E 4

ALP (cos a),

and at 6§ = 0 the terms of the series are not even bounded, a fortior: the series is not con-
vergent, and that however great ¢ may be. The like effect can be obtained with an initial
distribution given by a bounded p,.

(¢) Finally, let us remove the assumption (35) and suppose instead that the random step
assigns probabilities £, f to a = 0, & = 7 respectively. Then in place of (36) we get

Ay =>B+p's Ay —>f—f" as n—>oco. (38)
Of these two limits, §— /" may be zero, but our present hypothesis is that f+ /" is not zero,
otherwise we should be in case (4).

Consider the special case in which p(a) = ffor 0 << a < 7, i.e. zero probability is assigned
to all intermediate values of «. Here

Aow=F+F" =1, Agyy =F—p" =261, (39)

Hence Py = %Sy, + (20 —1) £S,,.1- (40)
The result of ¢ steps of this type is

P = BSp+ A, BS9,115 (41)
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RANDOM WALK ON A SPHERE 327
where 4, is the product of the ¢ factors (26— 1), possibly varying from step to step; and the
‘ “of (41) i

um oL ) = 31+ 4) polr) +3(1—4) po(—T). (42)

From (41) it is clear that if there is a step for which f = f’ = } then the odd harmonics are
completely eliminated at that step, and no further change takes place. If there is no step
giving § = §', the series for p,(r) converges for two distinct values of ¢ if and only if the series
for py(r) and p,(—r) both converge, and the series for p,(r) converges for all r (and a fixed ?)
if and only if the series for py(r) converges for all r.

We have not established such precise results as these in the general case to which (38)
refers. There may be examples (p(«), p,) with p(a) discontinuous at the ends of the range and
in which the harmonic expansion of p, is convergent (or is uniformly convergent) although
that of p, is not. But let us say that a series has dominated convergence if it satisfies the

M-test of Weierstrass, 18,(r)| < M, IM, <oo. (43)

Then in (a) a finite number of steps produced dominated convergence, whatever the initial
distribution: in (5) this would occur with some distributions p,: while in our present cases
dominated convergence of the series of even harmonics cannot be produced (i.e. will not
occur for p, unless already occurring for p,), and dominated convergence of the series of
odd harmonics can only be produced if there is a step for which f = f'.

It is to be noted that if, for some £, p, has a harmonic expansion which is uniformly
convergent then, for any ¢ > £, the harmonic expansion of p, is also uniformly convergent,
and with the same moduli of convergence as for p,. This follows from the fact that each
random step is an averaging process. For if

pi(®) = 5= [ [ ay dp (@),

(¢, 9) being spherical polar co-ordinates of r’ with r as pole, then a like relation holds
between corresponding terms

An, t+1Sn(r) and An,tSn(r,)

in the harmonic expansions of p,, ,(r) and p,(r’). If then

v=n+tq

> A, S,(r)|<e¢, forallr’andall g > 0, (44)
y=n+1
it follows that also
y=n+t
SA, S, (1) <e, forallrandall g > 0.
v=n+1

Thus if (44) holds for ¢ = £ it holds for all ¢ > £.

4. ASYMPTOTIC BEHAVIOUR

In our basic case the harmonic expansion of p,(r) converges uniformly in (r, ¢) for ¢ > 5.
Moreover the individual terms, other than the first, decay away to zero as {—>oco. It

follows that p,(r) =8, uniformly as #->oco. (45)

Our concern now is to generalize this result as far as possible.
40-2
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We observe first that there are cases in which
p,(r) =S8, formallyas ¢—o0 (46)

(by which we mean that each of the remaining harmonics decays away) although the

harmonic series for p, never converges and p, is never a distribution of bounded density.

Indeed, if
A,—>0 as t(—>o0 foreveryn >0, (47)

then (46) holds for every initial distribution p,. Now if, for all ¢,

p(e) =% for 0<a<im,
p(2) =1 for a=im,

then (47) holds and hence also (46) ; but if p, is the singular distribution (17) then p, is, for
every £, a singular distribution, assigning a charge 2 to one isolated point. Thus we must
expect to have to replace the uniform convergence of (45) by something more general,
even when (46) holds.

We shall in fact show that if

> f "sin?adp,(a) diverges (48)
t 0
then p(r) =8, strongly as ¢-—>o0, (49)
ie. ff]pl—S0|da)+O as ¢—>o00. (49 bus)

Secondly, we observe that if there is insufficient motion, if the steps of the random walk
give too much concentration on values of « near zero, then the remaining harmonics will
not be eliminated. In such a case we cannot expect stronger results than

A,—~ A, as t—>o0,
p(r) = 2ZA, S, (50)

n-nd

p,(r) = p(r) strongly as ¢—o0.

Thirdly, we observe that a step in which « is certainly equal to 7 would turn p,(r) into
p,(—r), while a step in which there is a high probability that « is near to 7 will turn p,(r)
into a distribution which is in some sense near to p,( —r). Thus (50) cannot hold in all cases.
What does hold in all cases is that there is a sequence of signs 0,, and a limit distribution

r), such that
p(x), such tha 6t:il @,—0,0,...0,—+1,
(51)
G)?Ant - An’ J
p(O,r) — p(r) strongly.
An alternative expression of the result is as follows. We divide p, into its even part ¢, and its
odd part g}, thus: .
‘ 7(r) = Hp(r) +p —1)] = Ty, 1S5 }

iy
74(r) = o) —p(—1)] = Zhgpr, Sprir: (52)

l


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RANDOM WALK ON A SPHERE 329

We divide p similarly into its even and odd parts ¢ and ¢’. The same random walk process
which develops py, o, ... from p, will develop ¢, 7y, ... from o, and will develop o7, 75, ...
from ¢;. For the even parts we have simply

AZn,l - AZﬂ’ } (53>

o,(r) - o(r) strongly.]

For the odd parts there is a sequence of signs ®, such that
®tA2n+l,t = Ngyi1s 1 (54)

7,(0,r) = 0,0,(r) - ¢'(r) strongly.|

Conditions for the simpler results (50) will appear in the course of the proofs below. We
remark at once that from the above it will follow that among the distributions p,

formal convergence implies strong convergence. (55)

4-1. We begin with a theorem which has its own interest and will be a principal tool
in what follows.

THEOREM. Suppose that, for some particular value of t, p, is a continuous density. Then the later
distributions p,., ., are all continuous densities with the same moduli of continuity as p,, they are umiformly
bounded, and among them _formal convergence implies uniform convergence.

Suppose that , ,
lo(r") —p(ry)| <ce
whenever the angular distance ;’?{ is < J. Letr, r; be any two points on the sphere with

angular distance 1/‘1‘\1 = o < 8. Then there is a rotation U of angle « which turns the sphere
intoitselfand turns the point rinto the pointr,. Thenp,, ;(r;) = p,,;(Ur) is the same average
of the values p,(Ur’) as p,,,(r) is of the values p,(r"). Since the angular separation of corre-
sponding points r’, Ur is < « < J, it follows that

i1 () —pra(ry) | <e.

Thus p,,, possesses the same moduli of continuity as p,. In particular, the distribution p,,,
is one of continuous density. Repeating the argument, we see that the densities p, , are equi-
continuous.

Since they all have the same mean S, they are also uniformly bounded.

Since they are uniformly bounded, we can by the diagonal selection process find a sub-
sequence {p,} which is convergent at each of a given sequence of points {r,} on the sphere.

We may choose a sequence {r,} everywhere dense on the sphere. Since the functions
p,(r) are equicontinuous, it then follows that they converge at every point r on the sphere,
uniformly in r. Let the limit function be p(r), then p(r) also possesses the same moduli of
continuity as the original p,(r), and the functions p, (r) converge formally as well as uni-
formly to p(r).

Now suppose for the moment that it is nof true that the complete sequence {p,,,(r)}
converges uniformly to p(r). Then there is a positive constant ¢ and a subsequence {p, (r)}

such that, for each »,
max |py(r) —p(r)| = ¢


http://rsta.royalsocietypublishing.org/

PN

s |

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

330 P. H. ROBERTS AND H. D. URSELL

By further selection we may secure that also the sequence {p,;} converges uniformly to some
limit p’(r). Clearly p’(r) is not the same function as p(r). Since both are continuous functions
they do not have the same harmonic series. Hence it is not true that the complete sequence
{p,...} converges formally.

We have shown that if the complete sequence {p,,,} does not converge uniformly then it
does not converge formally. In other words, if it does converge formally then it must also
converge uniformly. By the same argument, any subsequence of the p,,, which converges
formally must also converge uniformly: thus among the functions p,, , formal convergence
implies uniform convergence.

4-2. For each n > 0 there is a positive constant £, such that

1—|P,(cos a)| = k,sin%q,

1[4, >knf"sin2adp,(a).
0
We suppose now that (48) holds.
Then the product [T A4, diverges (to zero) for each n > 0, so that (47) and (46) follow.
@

We note also that T
T4, 0, >0 as T—o0 (56)
T7=1

for every tand every n > 0. This simply says that the property (47),which formally eliminates
all harmonics other than .S, is still possessed by the random walk even when the first ¢
steps are removed. Thus (47) does not depend on any ‘accidental’ vanishing of an individual
factor A,,.

We denote by /S, §; the probabilities assigned to « = 0, & = 7 in the ¢th step, i.e.

By = p(0+0), f;=1—p(m—0).

Either or both of these quantities may of course be zero for any particular value of £. From
(48) it follows that

S (—p=) = 3 [ ap() = 3 [ sintadp(e) = oo,

@ ®
so that TT (f,+/;) diverges to zero, and indeed
®

T
1T (fr hi) >0 as Toron (57)
for every ¢.
Given ¢ > 0 we can find an integer £ and a positive number § such that
[ o] dpia) . dpila) <o, (58)

where Vis the region in which at most four of the angles «;, ..., «, have sines not less than 4.
To see this we choose 7 > 0 so small that (1—7)5 > 1—e¢. We then choose ¢, so large that

LI (6+4) <1,

then §, > 0 so small that the chance that sina, < d, for all # < ¢, is also less than 5. Thus we
have in the space of co-ordinates («y, ...,«,) a region U, of probability at least 1—7, at
every point of which there is at least one ¢ (1 < ¢ < ¢,) for which sina, > 4.
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Similarly we choose t,, d, > 0 so that in the space of co-ordinates («,; £, < ¢ < {,) there is
a region U,, of probability at least (1—7), at every point of which there is at least one ¢
(¢, < t < t,) for which sina, = J,.

We make three more constructions on these lines, put £ = f;, define § to be the least of
85 0y, 03, 0y, 05 and U to be the region complementary to V. Then U, the region in which
sina, > 0 for at least five values of # in the range, certainly includes the product

U xUy,x Uy x Uy, x U,
and so is of probability P> (1—=7)°>1—¢,

whence (58) follows. »

Let py,,, ... be the result of steps random in direction but of fixed lengths «;, «,, ..., %, on
the original distribution p, satisfying (2). If («, &y, ..., a;) isin Uthen g, . has a harmonic
series which is convergent uniformly in both r and the @, the harmonic of order n being

T o)

It follows that Pr,y = f fﬂk oo, o D1 (1) <o dpy(e) (59)
(%)

is continuous. Now Pr = f"'fpk;“l’ . ak dpy(ay) .. dpeay)

(U+v)
= Pr;u T Pr; v (60)

say, and [ 17csvido < 2y @0 = (1-5) @y < @y

where p,, is the left-hand member of (58).
With an obvious notation we now have

5

in modulus 2n + 1

pr=pyutp,y forall 1>k
By the theorem of §4-1,
Prv—>ppS, uniformly as ¢-—oco0,

while [[1prtdo < [[ gl do < ey

(49) now follows by familiar arguments.
We remark in conclusion that the factor sin?a in (48) may be replaced by 1— |cosa]
or by a?(m—a)?.
4-3. For each n there is a positive constant £, such that
1—P,, . (cosa) = k,(1—cosa),
14 P,,, (cosa) = k,(1+cosa).

Hence LAy, = by || (1—cosa) dp(a),
0

Ly, = b, [ (14 cosa) dp, (o),
0

and so L—|Agp41,4 = £ mlnf (1—¢cosa)dp,(a). (61)

p=:t1
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We now no longer assume (48), but suppose instead that

S min f "(1—pcosa) dp(a) diverges. (62)
) ¢=x1J0
Then TT5,.,,, diverges to zero (63)
®

for every n. The same comment is to be made on (63) as has been made twice before in
similar circumstances, namely, that the product still diverges to zero if a finite number of
initial factors be omitted.

In this case the odd part o, of p, converges formally to zero, and we shall prove (50) with
the additional fact that the limit distribution p(r) is even:

,0(1’) = p(—1), A2n+l = 0. (64’)

Our proof, however, must distinguish two cases, according as (57) is or is not satisfied.
If (57) holds, we follow the argument of §4-2 as far as (60). Now for every n > 0 there is
a positive constant K, such that

1—P,,(cosa) < K, sin’a,

1A, <K, f " sin?adp,(a). (65)
0

’

We are entitled to assume that (48) does not hold, that
a .
> | sin?adp,(x) converges.
®

Accordingly (65) shows that the infinite product HAZn , Is convergent (absolutely): this
is still true if the first £ factors be omitted.

From this and from (63) it follows that the distributions p,,,; (¢ = k) formed from the
continuous-density distribution p;, ;; are formally convergent as { —co. By the theorem of
§4-1, they are therefore uniformly convergent to some limit p,,(r) as ¢ —oco. Hence

o6 v—Pr; vl < QO for all r,

fjlp“ v—Pr;uldo < €Q0>
for all pairs ¢, ¢’ sufficiently great,
=Ty = Tofe), =T, (66)

But as in §4-2, and with no restriction on ¢, # except the obvious one that they be > &

ffl/’t;vl do < €@y, fflpt'; V| do < ¢Q,.
Hence ffl/)t"pt'l do < 360,

provided that ¢, ¢ satisfy (66). Hence the distributions p, converge strongly to some limit
distribution p. They therefore also converge formally to p, which completes the proof of
(50) for this case: and (64) then follows from (63).

b
we have
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It is worth noting that

”lﬂu—pl do < ¢Qy,

so that we can find a sequence of distributions of continuous density which also converge
- strongly to the distribution p. Thus the distribution p is one in which the charge is an abso-
lutely continuous additive function of sets, and p itself a genuine density, albeit not in general
bounded. By (63), p, is an even distribution, and we see again that p is even.

4-4. We turn now to the case in which (62) holds, but not (57): thus

Z) (1—p,—p,) converges, (67-1)
63

](—)[ (B,+pf;) converges. (67-2)

(67-1) states unambiguously what we mean: it is equivalent to (67-2) if, in interpreting
(67-2), any finite number of (possibly vanishing) factors are ignored, and if, as is usual,
a product tending to zero is counted as diverging. The terms in (67-1) being non-negative,
the assumed convergence is in both cases absolute: and it excludes (48), since (48) implies
(87).

Combining (67-1) with (62) we easily deduce that

2min (f,f,) diverges
and hence that IT|g,—p,| diverges to zero. (68)

As before, (68) still holds if the first £ factors in the product be omitted.
Now let ¢ > 0 be given, and choose £ so that

II (B +p1) > 1—e.
1>k
We again separate p, for £ > £ into a main part p,, ; and a small part p,, ,; thus

b= PrutPyy (t = k), (69)
but the principle of separation is rather different. By p,,,; we denote that part of p, which is
obtained from p, if all the subsequent steps a, |, ..., %, are equal to 0 or =, thus

(t; U): a,=0 or m, for k<7<t

Accordingly p,. , denotes that part of p, which is obtained from p, by steps a;,, ..., o, at least
one of which differs both from 0 and from 7. With an obvious notation

[)t;U:kH (ﬁr‘*’ﬂ” > 1—e¢,

<T<!
by =1—pyy <e.
We also separate p, and p,,; into their even and odd parts: there is no advantage to be
gained from a similar analysis of p,,,,. Then
pr=0putosutpyy
Tsv=Puu Tk

0o = 0% 11 (B —F7), (70)

k<1<t
Jflpt; VI d(‘) <pt; VJ:[ |10k| dw’

41 Vor. 252. A.
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By (68), the product in (70) is numerically less than ¢ for ¢ > 7T, = T (¢). If, then, both ¢
and ¢’ exceed 7, we easily deduce

[[1p=pctdo <[ (loi +2101]+2 o)) do
< 5¢Q),.

It follows that the distribution p, tends strongly to some limit distribution p, hence also
formally. That p is an even distribution follows from (63): alternatively we easily see that

ff|ﬂ—0k| do < 260Q,,

so that p, as the strong limit of even distributions, is itself even.
4-5. We assume now that (62) is false,

> min Jﬂ(l —¢cosa)dp,(a) converges. (71)
@) ¢=+£17J0

Let the minimum for the #th term be given by ¢ = 0,: there can be no ambiguity after the
first few terms since the series converges. Then

> fﬂ(l —0,cosa)dp,(x) converges. (71 bus)
®

0

Define ©, as in (51), and introduce a new random walk{ by

pi(r) = p,(Or),
pila) = p(«) if 0,=+1,
=1—p(r—a) if ,=-—1.

Then p3, p3, ... arein fact formed from p; (= p,) by the random steps given by the cumulative
probability functions p;, and

> ﬂ(l —cosa)dp;(a) converges. (71 ter)
@Yo

To prove (51) for p, we have to prove (50) for p;, but there will be no question now of
proving (64).
To avoid unnecessary complexities we now drop the dashes and suppose that
™
> | (1—cosa)dp,(a) converges. (72)
@Yo
For every n > 0 there is a positive constant K, such that

1—P,(cosa) < K,(1—cosa),
1-1, <K, fﬁ (1 —cosa) dp,(a).
0

Hence, for every n, T4, converges absolutely, (73)
[0)

t For 0, = —1, this might conflict with the convention adopted in the introduction which permits p(c)
to be discontinuous to the left but not to the right. Evidently, however, this produces no essential difficulty.
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which still applies if the first £ factors be omitted and does not exclude the possibility that
a finite number of factors (for each n) should vanish. Formal convergence

A,—~A, as t—c

is guaranteed by (73), and a A, can vanish only ‘accidentally’ by the vanishing of an in-
dividual factor A,,.

We have again to treat separately the cases in which (57) holds and those in which (67)
holds. We remark in passing that, with the adjustment leading to (72), Xf; converges, so
that the separation is according to the divergence or convergence of

2(1 _I/‘?t)? Hﬁt’

If (57) holds, we argue as in §4-3. By (73), the main part of p,, ; converges formally as
t - o0, and so, by the theorem of §4-1, it also converges uniformly, a fortiori strongly, to
some limit p;,. The residues p,,, being of small total charge, it follows as in § 4-3 that the p,
converge strongly. Again as in §4-3, the limit distribution can be obtained as the strong
limit of distributions p,, of continuous density, so that p itself is a genuine density, albeit
not in general bounded. The difference is that p;, p need not be even.

If (67) holds, we argue broadly asin § 4-4: the argument is indeed simpler. IIf, converges,
and we choose £ so that T4 > 1—¢

1>k
where ¢ > 0 is given. The basis of the separation
pe=Psutpyy (E=4)
of p, into the main and minor parts is expressed by
(t; U): a,=0 for k<7<t

Then Pi;u = P uPrs
buuv= H ﬁ1> 1—e,
k<7<t
Then [let;V| dw <.ﬁt;VJ‘J‘llokl dw < eQO’

J\JAlpl_“ka do < 2¢Q, (all z>=k)

and so p, tends strongly to some limit distribution p. This completes the proof of (51) and
so of (55): in particular, (47) implies (49).

4-6. We have shown that (48) implies (49), for every p,, and hence (47). Itisin a certain
sense ‘nearly true’ that (47), conversely, implies (48). In fact (65) shows that if (48) does
not hold then the product %’)[/12,” converges absolutely, and so A,, , tends to a non-zero

12

limit as £ —> oo unless, for some particular value of ¢, A,, , ‘accidentally’ vanishes. Thus we
have the (apparently) rather strong result that if we know a single even value 2k for which
Ay, 0, other than “accidentally’, then we can deduce (48), (49), and also (47) for every n,
whether odd or even.

But it is possible for (47) to hold ‘accidentally’ for every n > 0, even with a random walk
{p,()} satisfying (72). A trivial example of this is found if p,(«) = §(1 —cosa) since then,
whatever the later p,(«) may be, p, = S, and A, = 0 for all > 0 and ¢ > 0. But there are

41-2
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non-trivial examples in which, for any finite value of ¢, only a finite number of the A,, have
been reduced to zero. In fact, given ¢ > 0 we can construct a function f(x), continuous and
positive in —1 < g < 1, and such that
1 1
[ swdn=1 [ a-nswan<e
Since any continuous function can be approximated arbitrarily closely by a polynomial,
we may suppose that f(«) is a polynomial: and among the polynomials satisfying these
conditions we choose one with the least possible degree 7,(¢).
Now let E be any selection, finite or infinite, of the integers n > n,(¢), and define

4 = S+ 3 2B (w).

1
¢(u) is certainly continuous in (—1,1) and f ¢(u) dp = 1. For sufficiently small 7,
-1
#(y) = 0in (—1,1) and 1
|- a=méwdu<e.

Define p(a) by dp(«) = ¢(cosa)sinada, then A, + 0if ne E, A, = 0 if n > ny(¢) and n does
not belong to E. Thus we can satisfy the condition

f:(l —cosa) dp(a) <e

and still have complete control over which of the 4, vanish, and which do not vanish, in
n > ny(e).

This having been established, we take any convergent series ¢, of decreasing positive
terms, and we define p,(«) as above with ¢, for ¢ and the set of all # > ny(¢,,,) for E.Then
A,, = 0 if and only if n < ny(e,,). Since ¢, — 0, therefore ny(¢,) - 00, so that (47) holds,
‘accidentally’ for every n, and non-trivially. And (72) is satisfied since 2¢, converges.

In this example, p, is a distribution of continuous density for all ¢ > 0, whatever p, may
be, and hence not only (49) but even (45) holds.

Accidents which happen always can scarcely be ignored: but the standing of our criteria
(48), (62) is improved if we make the following observation. If (48) is satisfied, every
harmonic but S, is eliminated however many initial steps of the walk are omitted: and there is no
even harmonic of which this is true unless (48) is satisfied. If (62) is satisfied, every odd
harmonic is eliminated however many initial steps of the walk are omitted: and there is no odd
harmonic of which this is true unless (62) is satisfied. In this sense (62) is necessary as well
as sufficient for the elimination of either one odd harmonic or all odd harmonics, while the
stronger condition (48) is in this sense necessary as well as sufficient for the elimination of
even harmonics.

5. RANDOM WALK ON A CLOSED RIEMANNIAN MANIFOLD

5-1. Random walk on a Riemannian manifold M can be expressed by a sequence of
functions 7,(r,r’) such that, if the point has reached the position r’ after (¢—1) steps, the
probability that it is brought within the volume dV at r by the ‘th step is

7,(r,r’) dV,
where : dV =dr /g (r),
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and g(r) is the determinant of the metric tensor g;;(r) at r. Clearly 7,(r,r’) must satisfy
f 7(r, ') dV = 1. (74)
M
In place of equation (4), we shall have

o) = [ nir,x) pes(e) AV, (75)

and the characteristic functions ¢,, of the ¢th step therefore satisfy

[ e e) ule) AV = ugae). (76)

We shall suppose that 7,(r,r’) is symmetrical in r, ' (cf. (84) et seq.). Note that, in this
case, equation (75) is exactly analogous to (4) in that it expresses p,(r) as a (weighted)
average of p,_,(r’). Also, equation (76) shows that ¢,(r), ¢,,(r) are orthogonal} if their
characteristic values are different:

[ 4ul0)pulx)av =, (77)

In any case of degeneracy, a base of mutually orthogonal functions can be constructed for
those characteristic functions belonging to the same characteristic value. Thus, we may
consider the set to be orthogonal and, without loss of generality, normalized to unity:

| Wutr)zay = 1. (78)

Provided that the set is complete, equation (76) shows that 7,(r, r’) possesses the (formal)

expansion
7T 1) = 2 Auhu(T) u(T'), (79)

and, if the probability density p,_,(r’) before the /th step is
piei(0) = 2 0y du(r), | (80)
then the probability density p,(r) after the #th step is

pt(r) = %AnlCn¢nl(r) (81)

It has been observed in § 2 that the success of our method for random walk on a sphere
rests on the fact that the same characteristic functions occur for each value of . In the same

t If 7,(r, t’) is not symmetric and if ¢, are characteristic functions of 7,(r’, r), the functions ¢, ¥,
would generally form a biorthonormal set:

j Bue(X) Pe(r) AV = 8,
M

leading to a very similar analysis.
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way in the present case, if ¢,, is independent? of ¢, the formal expansion proceeds in exact
analogy, and the distribution after ¢ steps from a starting point r, is

pi(r) = gAmsﬁn(ro) (1), (82)
where A, = ]i[ A e (12)

5-2. We have shown that from an (orthonormal) base, we can construct a class of prob-
ability functions, each of which is characterized by a diagonal form (79), and for which
our basic method succeeds. However, such probability functions do not necessarily corre-
spond to our notions of ‘random walk’, and these will now be clarified.

Along each geodesic through r’ mark off a distance o, thereby obtaining a ‘geodesic
sphere’, centre r’ and radius «, whose surface and volume will be denoted by S(r’, «) and
V(r',a). A random walk of length « from r’ is one which with certainty moves the point r’
to a point on S(r’, a), the probability that it moves to any infinitesimal patch d$ of S(r’, «)
being dw/Q), where dw is the infinitesimal solid angle subtended at r’ by the geodesics through

r’ and dS, and Q = 2n#/T'(1q)

is the total solid angle, M being of ¢ dimensions. The general random walk (third extension)
is obtained by letting « itself have a probability distribution dp(a).
Let @(r,r’) be defined by
dS = ®(r,r’) do. (83)
Strictly ®(r, r’) is a functional of the geodesic arc and not merely of its endpoints. It is, by
convention, positive for small «, but it may change sign at a conjugate focus. The relation-

ship between p,_,(r’) and p,(r) is
L[ e ds
! Qlse,ep O(r,r’) °
and, since @(r,r’) is symmetric in r, r’ (Walker 1942), the approach of §5-1 is justified

a posteriori. Equation (84) may be written

p(r) = averagep,_,(r'), (4)

rr=o

(84)

the average according equal weight to patches d$’ of $(r, «) that subtend equal solid angles
at r. The characteristic functions are solutions of

average dy(r') — A, (r), (5)
which may be rewritten o S
d ’

=0 L(r » (I) T, r = Ag,(1). (85)

The integral of equation (85) may be expressed as an infinite series (see appendix B, equa-
tion (B 12)) which, for small «, reduces approximately to

5T a) ~ ¢A<r>+,@%a2v2¢k<r>- (86,

+ It may happen that 7,(r, r’), for example, possesses a degeneracy A;; = A,; and that the ¢,,, ¢,,, first
chosen as base are not characteristic functions of (say) 7,(r, r'). In such a case it may still be possible to
obtain characteristic functions independent of ¢ by replacing ¢;,, ¢,, by suitable linear combinations.
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Thus, the characteristic functions for an infinitesimal step satisfy the diffusion equation

gij¢(n),ij = V2¢n = Cn¢n (87)

approximately, the corresponding value of A being

A= 1+ g,,, (88)

to the order of accuracy warranted. A diffusion of variance V turns an initial distribution

Po = ZCn¢n
into p = 2eV&2aC ¢

nd

cf. equation (14). The characteristic functions ¢, in (87) are, by hypothesis, everywhere
twice differentiable and so a fortior: bounded. We have used in equation (87) the summation
convention in the indices 7, j and the usual notation for covariant derivatives. In full

_ _ 8 99
P =015 = g L
dg, 0g; 0g;
k — Lokt (251 6l T5i
I = et (3 + G~ ).
We suppose that the set ¢, is complete and orthonormal and bear in mind the possible
existence of degeneracies.
For large , the functions determined by the differential equation (87) may be expected
to be solutions of the integral equation (85) for certain types of space, but not for all. We

will show that one of these special types is the class of (completely) harmonic spaces, i.e.
thoset for which

®(r,r') = O(x). (89)
When this holds, we find
Qd(a) 0g,(r; a) _ J 94,(r') 4 (90)
(?OL - S(, o) an ’

since the ®(a) may be taken outside the integration sign. Now, applying the generalized
divergence theorem to the right-hand side of equation (90), we obtain

Q@(a)‘wl;‘%@zfm V2, (r') AV’ = gf (r')dV". (91)

Differentiating this result with respect to « and bringing (I)(oc) through the integration sign
again, we find ,
9 04,(r; a oc)) J ) ds

Q. ((I)(oc) o 0@ [ (D - (92)

Thus, provided we treat T as constant, §,(r; «) satisfies the ordinary differential equation

53 @0 = ¢, (93)

1 The definitions that have been given for harmonic spaces have not been very decided on the range of
a for which equation (89) is to hold. Clearly, if the space is analytic, the question does not arise. We shall
require it to hold for all & up to the length of the longest random step.
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It follows that, at least for each characteristic value {, of (87), equation (93) possesses a
solution which is bounded whenever equation (89) holds. Now, since

D(a) ~at7! as a—0, (94)

equation (93) has a singularity at « = 0, and there is only one solution which remains
bounded (apart from the arbitrary constant factor). This solution is non-zero at a = 0.
Denote it by ¢,(«) and fix the arbitrary constant factor by the condition

¥,(0) = 1. (95)

It follows that ¢,(r; «), considered as a function of « for fixed r, is a multiple of ¥, («), whence

$.(F38) = (@) $,(r). (96)

Thus, in harmonic spaces, the characteristic functions of equation (87) are characteristic
functions of equation (85) for all «, the corresponding characteristic values being ¥, ()
or, for problems with the third extension,

| @) dp(a).

Equation (82) therefore holds and there is a complete analogy with the formal solution
of § 2.

(We may note in passing that equation (96) may be regarded as including Willmore’s
theorem (1950) on mean values over geodesic spheres of harmonic functions in harmonic
spaces. See also Walker 19454, 1947.)

5:3. We present here some interesting consequences of this analysis which are, however,
irrelevant to the subsequent development.

In the first place, we observe that equation (93) may be written

Vi, = Gt (97)

Suppose, in fact, that the geodesic distance ¢ = r'risa single-valued function of the position
r’ in a certain (small) neighbourhood of r, and consider a function () of this distance as
a function of r’ in the neighbourhood. We may apply the generalized divergence theorem
to the volume V of a narrow cone of geodesics radiating from r to the area d$” at r’ on S(r, )

JVVZ;#dV:f ds — fd’”dS' (98)

the integration over the remaining surface of the cone clearly makes no contribution. But
we may rewrite the right-hand side of this equation

Jparas - Jogian [Rog) e[ gz @) )

Thus, it follows that d1ﬁ N
f [Vzgﬁ—(T) aa( a5}}11/_ 0. (100)

Differentiating this result with respect to & and shrinking the area d$’ to zero, we find

o = 040 oo
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a result independent of any assumption about ®. This establishes the equivalence of equa-
tions (93) and (97). Equation (101) was obtained by Ruse (19304) by a different method.

Suppose next that equation (89) holds, i.e. the spaceisharmonic. Then, forany {,, equation
(87) has a solution which is a function of geodesic distance a = 1‘/0? from the fixed point
r, only, and which is well defined and continuous in a (small) neighbourhood of r: namely,
the solution to equation (93) which'is continuous at = 0.

It does not follow that we obtain in this way a solution of equation (87) which is single-
valued and continuous over the whole manifold. In general, two points r, r, can be joined
by an infinity of geodesic arcs of different lengths a,, a,, ....

If the space is globally harmonic, in the sense that equation (89) holds for geodesic arcs
of arbitrary length «, and if {, is a characteristic value of equation (87), then equation (93)
has a solution ¥, () which is everywhere finite. This fact follows from equation (96), applied
with a point at which ¢,(r,) is not zero. The remarkable feature of this result is that equation
(93) has a singularity at each of the zeros of ®(«), but the same solution of (93) is continuous
at all these singularities of the differential equation.

The functions ¥, () may have the property that

Valw) = ¥ulen) = -5 (102)
for all the geodesic distances «;, a,, ... between any two points r, r,. In this case—and only
in this case—,(a) gives a solution of (87) which is single-valued and continuous over the
whole manifold and is a function of ‘the’ geodesic distance from a fixed point r,,.

While all the conditions (102) are necessary for this purpose, it is, in fact, sufficient that

Valon) = Vule), (103)
for the two shortest geodesic distances. To see this, define
En(r) = (1) (104)

where ¢, is the shortest geodesic distance from a fixed point r, to r. Along any geodesic
from r,, there is an initial arc in which this is, in fact, the shortest geodesic. Let r; be the

endpoint of this arc. On the arc ITO\I‘I, ¢,(r) is the same as ¥, («), @ being the arc length along
this particular geodesic, and hence §,(r) satisfies equation (87). In the neighbourhood of
r,, there are points for which o = a,, but, by (103), it is still true that £,(r) = ¢, («). Hence
£,(r) satisfies equation (87) also at r,. Thus, £,(r) satisfies equation (87) everywhere. It

follows, by analytic continuation, that it equals ¥, («) for all geodesic arcs ;;;. Thus, equa-
tion (102) follows.

For fixed r,, the various geodesic arcs from r give points r; which describe a submanifold
& = L(r,). Itissometimes called the cut-locus; cf. Whitehead (1935, p. 700) where further
references may be found. On our present hypotheses—summarized by equations (89)
and (103)—this submanifold #(r,) is in fact a geodesic sphere of centre r.

To see this we suppose first that

®(a) =0 at r,. (105)
Then there must be two distinct geodesic arcs y’, " of equal length from r to r,. Since the
arcs are distinct, their directions at r; must be distinct, though they could be (and in fact
are) directly opposed. By (105), affine normal co-ordinates (cf. Veblen 1927, chap. 6)
with centre r, and derived from the sheaf of geodesics near to y’ form a proper co-ordinate

42 Vor. 252. A.
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system near r;. We denote by o’ the arc length from r; to any point near r, along the geo-
desic arc in this sheaf. Similarly, we define «” from the sheaf of geodesics near y”. Since the
directions of y’, " are distinct, the gradients of the functions o', «” at r, are different (although
they may be, and in fact are, equal and opposite). The submanifold #(r,) is given by the

equation
q d, — d”,

which shows that it is in fact (¢—1)-dimensional, and that it makes the same angle ¢ with
y" and y”, which approach it from opposite sides. We now use (103) for points just off & (r,)

and obtain V' (@) sin 6 = 0.
Here sin ¢ + 0, since 7', " have distinct directions at r;, and so
Y(x) =0, (106)

which fixes a. By continuity, the radius s of &(r), the appropriate solution of (106), is
independent of r\. Since « is constant on (1) it follows that = {7 and so that y” is the
continuation of 9’ in reverse. Thus after an arc length 24 every geodesic returns to its
starting point: in particular ®(2s) = 0. An example of this is the real projective space,
represented as a unit sphere with diametrically opposite points identified, when

O(a) =sin?ta, 4 =4
On the other hand, suppose that
O(a) =0 at 1. (107)
Then « is fixed by (107), so that again &(r) is a geodesic sphere of centre r, and radius 4
independent of r,. In this case, however, #(r;) is of dimension only ¢—7»—1, where r is
the order{ of the zero in (107). In this case also the prolongation of one geodesic from r,

beyond the point r; in which it meets &#(r) is simply another geodesic from r, to r; in
reverse, so that every geodesic ray returns to its starting point after an arc length 24.3

We may now establish an addition theorem for the function gﬁn(fo;) . Define V', by
V= [ EnRdy = 0 ) de (108)
It is convenient to normalize £,(r) : define
uol®) = - al). (109)

1 The extreme values of r occur for the sphere (r = ¢—1) and the complex projective plane (r =1). For
the latter cf. the footnote to §5-4.

+ If a harmonic space be such that ®(a,) = 0 for some a; > 0, then every geodesic ray returns to its start-
ing point after an arc length 2c;. For the geodesic sphere S(r;, a) is of zero (g—1)-dimensional measure,
therefore of dimension less than (g—1), say (¢—r—1) where r > 1 can in fact be shown to be the order of
the zero of ® at «,. Each pointr, onS(r,, &) is therefore the terminus of an r-dimensional pencil of geodesic
rays from r,: these rays all meet the geodesic sphere 5(r, ;) at right angles: and they fall therefore into
pairs which arrive at r, from directly opposed directions. Hence the prolongation beyond r; of one member
of such a pair is simply the other member of that pair in reverse.

It would follow that (=) 1D (—a) = O(a) = (—1)" D20y —a).

Thus ®(«x) would be periodic of period 4a,: apart from a possible sign it would be periodic of period 2.
All the functions ¥, (a) would be even functions of period 2e,. It would also follow that a topological sphere
of (g—1) dimensions could be expressed as a fibre space (Steenrod 1951) with r-dimensional spheres as the
fibres: few examples of this are known to us.
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Let ¢,(r) (1 =1,2,...) be other characteristic functions which, together with ¢,,(r), form
an orthonormal base for solutions of equation (87). Consider the integral

[ 4D gt ar

This may be evaluated by integrating first over S(r,«’) and then over o’ and by making
use of equation (96):

[ 08w ar = [Py [ TS
:II}nqu'(r)' (110)

This establishes the addition theorem for ¥, (/r—q‘) :
Yu(r'T) =¥, 2 $ulT") $ui(T). (111)

In passing, it is interesting to note that, since the left-hand side of equation (110) vanishes
(z & 0) at the point r = r;, from the orthogonality of the base chosen, it follows that

$ni(ro) =0 (¢>0). (112)

This completes the analogy with the working of § 2; cf. the proof of equation (6).

5:4. We have shown in § 5-2 that the method of § 2 for a sphere will generalize at once to
closed harmonic spaces. This is a very restricted class of manifold but is more general than
that of closed spaces of constant curvature. Willmore (1953) has given several examples of
closed harmonic spaces not of constant curvature. Walker (19454, § 3, equation (10)) first
constructed a harmonic space not of constant curvature. As defined by Walker, the space
is not a closed manifold, but it can be closed by the additiont of a two-dimensional manifold
‘at infinity’. Further, it satisfies the conditions necessary for the validity of the addition
theorem (111). We now inquire what are the conditions on the space in order that our
method shall apply for every random walk, and in particular whether there exist any other
spaces besides harmonic spaces which have the required property.

A space with this property we shall call a commutative space. We recall that, by definition,
the property in question is that there exist a complete orthonormal set of functions each of
which is a characteristic function for every random step. This is clearly equivalent to the
property that any two random steps commute. Every harmonic space is commutative.

Each ¢, in the supposed set of common characteristic functions must be a characteristic
function in particular for infinitesimal steps, and so satisfies (87) with some value of {,.
Thus the common characteristic functions are determined as those of the operator V2—apart
from the very real possibility of degeneracy among the latter.

1 In fact, the substitution w, (5 —iy) = wy(z+it) = wy(3K)H
reduces Walker’s manifold to the (complex) projective ‘plane’, with homogeneous co-ordinates (w;, ws, w,)
not all zero, endowed with the metric
|y duwg — wy dw,|? 4 [wydw, —w, duwy|? + |w, dw2~w2dw1[2

$K ([0, |* + |wa|* + [ws]?)*
the extra points added ‘at infinity’ being those of the ‘line’ w; = 0. This metric is clearly invariant under
unitary transformations of the variables w;, so that the space possesses a transitive group of motions and is
therefore symmetric.

ds? =

42-2
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Now we can write

Tl(r3 r,) = Z zamn¢m(r) ¢n(r,)’ (113)
where the q,,, may of course depend also on . Applying this in (75) with

pr-1(T") = gi(r’)
we gCt pt(r) = %dmkgém(r)'

Thus in order that the ¢, be in fact common characteristic functions for every random step
it is necessary and sufficient that, for every random step,

the matrix [a,,,] is diagonal. (114)
It is therefore necessary that, for every random step,
Vi 7(r,r’) = V2, 7(r,r’). (115)

This condition would be also sufficient for commutativity if the characteristic value prob-
lem (87) were free from degeneracies. But degeneracies are only to be expected, and so
(115) only reduces the matrices [a,,,] to diagonal block form, the different blocks corre-
sponding to the different characteristic values {, of the operator V2. Any one such matrix
may of course be reduced to diagonal form by a change of basis, but commutativity requires
a basis {¢,} which reduces all the matrices [a,,,] simultaneously to diagonal form. Thus
(115) is necessary but not, so far as we know, sufficient for commutativity.

Condition (115) may also be derived in the following alternative way. If arbitrary
random steps commute, then any random step must commute with an infinitesimal step,
i.e. with diffusion. According to equations (75) and (86), this requires that

vz, f r(r, 1) p(r') AV’ — f 7(r, ') Vi, p(r') AV, (116)
M M

and this, by an application of the generalized Green’s theorem, is equivalent to
> Dy PP g > 15 €q

f p(t) [V2,— Vi&,] 7(r, ) AV’ = 0. (117)
M

Equation (117) must hold true for all p(r), and thus equation (115) is recovered.

Condition (115) requires ‘interpretation’ in general, and in particular for the basic
case of a random step of fixed length «. Its meaning is clear in the case of a random step
given by a cumulative probability distribution p(«) which is thrice differentiable; for then,
by the arguments with which § 5-2 began,

, 1 dp(a)
Qd(r,r) do (118)

and, using equation (101),
1 d%(«) ﬁoc J d?p(a) dp(a)
o) de T8 ) G g [(I)(r ] ez TV [@(r r )] '
(119)

QVi1(r,r’) =
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Thus, (115) gives rise to the two geometrical conditions

do
(?x’ dxi [(I) r,r’ :I - axl' Ixd’ [(I) r r ] (120)

Vi [m] = Vﬁ’)[m]- (121)

The first of these is similar to (89), but whereas equation (89) requires that ® is a function
of geodesic separation alone, condition (120) only requires that, along any particular
geodesic, @ is a function of « alone. Clearly, this does not prevent that function from varying
from geodesic to geodesic in any manner consistent with equation (121).

The normal tensors can be used to bring out the differences between conditions (89) and
(120). Let r be the base point of a system of affine normal co-ordinates in which the co-ordinates
of r’ are y'. The components of the affine extension may be expanded in a Taylor series
(cf. Veblen 1927, chap. 6, equation (6-4)),

]l:k(r,) ]ka(r)y +2| Jkab (I‘)y .7/ +?' Jabc(r)y Y y + .. (122)

where 4i,(r), etc., are the components of the affine normal tensors in the co-ordinate system y.

. ; . 0, O(r,r)
Since Tily) = gy—kang( y) = o A0 T (123)
O(r,r 1 .
we have ln—fzn—l ) 2 OLl] I')yyj—|— Aou]k( )yy y + Aazjkl(r) yzy]ykyl“” (124)

Condition (89) for a harmonic space requires that each individual term in this series is a
function of « alone, whence:
(i) A“" = k,(S;) 8ijs

tJ %

SZJHAOLZ_]kl kySi; k1 8ij Sk

SijklmnAocijklmn k S klmngzjgklgmm? (1254)
(ky, kg, ks, ... constants).
(Sijx) A%k = 0,
SuklmAauklm = O’ (1255)
SijklmnoAaijklmno =0,

.....................

where §;;;... denotes the symmetric part in the suffixes 7, , £, ... of the expression following it.
(It may be omitted when enclosed in brackets.) This infinite set of conditions has been
postulated by Copson & Ruse (1940, equations (7-:19) to (7-23)). Condition (120) for a
commutative space requires that the series (124) is unchanged by replacing 4 by —y
everywhere. Thus, conditions (1255) must still be satisfied and the first of these establishes
that all two-dimensional commutative spaces are of constant curvature (cf. Copson & Ruse
1940, equations (7-16) et seq.). Conditions (1254), on the other hand, need not be satisfied
by commutative spaces.
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In appendix B we introduce a sequence of invariant linear differential operators A,,
(v =1,2,...), of the order indicated by the suffix. If both the metric g; and the distribution
p(r) are analytic we obtain

A0 = 3 b0 (o) g p(r) (126)
’ v=0 v! F(V+%q) * 2 ’
for sufficiently small «. This leads to the conditions
AZ/LA2V = A2vA2/t (127)

as necessary conditions for commutativity in an analytic space.

If the space is analytic then the conditions (127) are sufficient as well as necessary for
commutativity. Their sufficiency follows first for distributions p(r) at least locally analytic,
and for steps of lengths «, f sufficiently small, but the result can be freed from these restric-
tions (see appendix C). The conditions (115) are equivalent to the conditions (127) with
p=1. 4

It is not known whether any commutative manifold exists which is not analytic, but if
so then it must satisfy those conditions (127) which on it make sense.

The question whether there exist commutative spaces which are not harmonic is answered
by the following theorems:

(I) Every harmonic space is commutative.
(IT) The product of two harmonic spaces is not in general harmonic.

(III) The product of two commutative spaces is commutative.

Of these theorems, (I) has already been established, and we shall prove (II) and (III)
in §5-5. In particular, the product of a circle and a sphere, a three-dimensional manifold
which can be embedded in ordinary five-dimensional space, is commutative but not
harmonic.

5-5. Given two spaces M; and M,, of typical points r, and r,, theproduct space
M = M, x M, is defined to consist of points r == (r,, r,), where r, and r,range independently
over M; and M,. If M; and M, are Riemannian manifolds with metrics ds? and ds3, then it is
understood that M is assigned the metric

ds? = ds}-+ds3. (128)

A geodesic arcin M is given by two geodesic arcs in M, and M,, with the arc lengths related by
ds; == dscosl, ds,=dssinf, @ = const. (129)

This follows for short arcs from the minimal property of a geodesic (and elementary plane
geometry): verification from the geodesic equations is immediate. Now consider a thin

sheaf of geodesic arcs, all of length «, starting from a common origin in M and occupying
at that origin a small solid angle dw formed by

a small solid angle dw, in A,

a small solid angle dw, in AM,,

a small range df of 4.
Let @ refer to the arc in M and let ®,, ®, refer to the corresponding arcs in M,, M,, whose
lengths we denote by «,, a,. Then

a; =acosl, a,=asinf, da;do,=oadadb
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Also the volume element in M is
ddode =D, dw, de, O,dw,da,.
Hence ddw = a®,D,dw, dw,dd. (130)
Making « — 0 we have O~arml, O ~afml, O, ~afl

where ¢,, ¢, are the dimensions of M,, M, and where

9=014,
is the dimension of M. From equation (130) we therefore get
dw = cos?~1 6 sin®2~! fdw, dw,dd, (131)
and so D = a®,D,sect~1 0 cosec?z™1 . (132)

Equation (132) takes simpler form in terms of Ruse’s invariant p (Walker 1942) : if we define
p= (I)cxl—q’ Py = (Dl “}_m) P2 = @204%—(12,
then (132) becomes p = p1Pa- (133)

Now suppose that M, and M, are harmonic spaces, so that p,, like ®@,, is a function of «,
alone, and that p, is a function of @, alone. In order that M also shall be harmonic, p must
be a function of « alone, and these functions must satisfy

p(@) = py(cost) pyasin®),

for all values of @ and §. Varying ¢ with « constant we get

pi(an) fay prlay) = pa(ay) oty po(ey).

Since here a; and a, are independently variable, it follows that the two sides are equal

constants, say 2¢, whence ca
5 p(e) = py() = poar) = e,

or, in terms of @, D, (0) = aq-lew?, Oy(a) = ar2~les, (134)
Whether any closed harmonic space exists for which @ takes the form (134)—except for
simply harmonic spaces, ¢ = 0—may be doubted: there is no doubt that harmonic spaces
exist, e.g. spheres, which do not satisfy (134): and so (II) is established.

On the other hand, suppose that M, and M, are commutative spaces. Then in M, there
is a complete orthonormal set of functions, each of which is a common characteristic function

for every random step on M. Let ¢,,,(,;) be the characteristic value corresponding to ¢,
when the random step is of fixed length «,. Then

gzmlirl; OLI) = wml(al) ¢ml(rl)$ (135.1)

which corresponds exactly to equation (96). So also the manifold A, gives us a complete
orthonormal set ¢,,(r,), and corresponding functions ¥,,(a,), such that

Gua(Tys ay) = Yo(ty) B0(T). (135-2)
Now define on M the functions

Gun(T15T2) = @1 (1) Ba(Ty)- (136)
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Evidently they form a complete orthonormal set on M. And from (131) we get

(L5 @) = (@) B (1), (137)
i

where QY (@) = £ sz cos? "1 sin2 1 Gy, (acost) ¥,,(asinf) db. (138)
0

Here Q, Q,, (), denote the total solid angles in spaces of dimensions ¢, ¢,, ¢,, respectively.
This shows that ¢,,,(r) is a characteristic function for a random step on M of any length o.
For a random step on M with the third extension, it is still a characteristic function, the
characteristic value being

[unla) ap(a).

Thus M is commutative and (III) is established.
It is worth noting that these results depend on the relation

3
QR() = Q,Q, f " cost 1 sintr-10 Ry cos ) Ry(asin ) df. (139)

Here R, («,) is an operator acting in the space M. Itisin factsimply the operation of a random
step of length «, in that space. Similarly R,(«,) is the operation of a random step of length
@y in M, and R(a) the operation of a random step of length « in M.

Finally, we give another proof of (III) depending on the criterion (127). This proof
assumes that M, and M, are analytic spaces: and it also assumes the sufficiency of (127), which
is discussed in appendix C. We observe, then, that we have linear differential operators
A,,, 1 in the space M,. These involve differentiations with respect to the co-ordinates on M,
and also functions of those co-ordinates, derived from the metric tensor on A4 : but it does
not involve either functions of the co-ordinates on A, nor differentiations with respect to
them. So also, mutatis mutandis, for the linear differential operators A,, , on M,. Both sets of
operators can be interpreted as operators on M, and in view of what has been said it is
clear that A,, , commutes with A,, ,. (140)
Since M, is commutative, the operators A,, ; commute among themselves: since M, is
commutative, the operators A,, , commute among themselves. Thus

the operators A,, | and A,, , all commute. (141)

From what we said earlier about geodesics on M, it is clear that a set of affine normal
co-ordinates on M at a point (r;,r,) can be made up of a set of affine normal co-ordinates
on M, at r, together with a set of affine normal co-ordinates on M, at r,. In particular, if
we choose pseudo-Euclidean co-ordinates (cf. appendix B, following equation (B5)) on
M, at r| and on M, at r,, the two sets together give pseudo-Euclidean co-ordinates on M at
(r,,r,). Referring to appendix B, equation (B 15), we see that

Al
Aza - Z /7,—1), A2,M, 1A2V,2~ (142)

pHy=2A

From (141) and (142), it is clear that the operators Ay, on M commute: and so, by the
sufficiency of (127), that M is commutative.
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5-6. In this final section we offer a few remarks on the possibility of generalizing the
work of §§ 5-1 to 5-5 to manifolds that are not compact.

There is little formal change in § 5-1. Now, however, the spectrum of (75) will include a
continuous part; thus, integrals will appear in place of summations. Neglecting a possible
discrete part, the characteristic functions for the ¢th step will depend on continuous
parameters (§, say) and will satisfy

[ e e 4,8 AV = M) g E). (143)

These functions can be used to define an integral transform in terms of which p,_,(r’) will
be represented by a function ¢,_,(§) such that

palt) = [0,1(8) $r'8) &, (144)

the integral being taken over the entire range of §. The law of formation then gives an
integral form for p,(r):

pix) = [448) 0,1(8) 4(r. ) &, (145)

or, since the functions ¢,(r,§) are orthogonal for different €,

7,(8) = A(8) 0,-,(8)- (146)

If the characteristic functions are independent of ¢ and are properly normalized, the
distribution after ¢ steps from a starting point ry is

pdr) = [A(E) 4(ry 5) B(r,E) (147)

where AJE) = f[ ) (148)

In the case of a Euclidean space, the characteristic functions are simply expi(§.r) and
(144) reduces to a multiple Fourier transform. Thus, we recover the well-known method
due to Markoff (1912) (see, for example, Chandrasekhar 1943, p. 8).

There is little formal modification necessary in §§5-2 to 55 and it may be anticipated
that the results of these sections will hold for open manifolds and, in particular, that the
class of commutative spaces will include that of harmonic spaces and their products but
may be more general.

ApPPENDIX A

Let {Ng} be any given increasing sequence of integers. We shall define sequences {r;},
{a,}, {f;} such that

{n,} is a subsequence of {N,}, (A1)

0 < frpr <o <f (A2)

b < dm, logn, >4, (A3)

P, (cosa) =% forallain 0 <a<ay, (A4)
2 1

A/i’lkﬂsil’lﬂk < logn,” (As5)

43 Vor. 252. A.
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We first choose f;, so that 0 < #, < im. We then choose n, from the sequence {Ng} and
so large that (A 5) holds for £ = 1 and that logn, > 4. We then choose ¢, in 0 < a; < f,
and so small that (A 4) holds for £ = 1.

When 7., «,, £, have been chosen for x < &£ we choose §, in 0 < f, < a;_; and then choose
n;, from the sequence { Ny} and so large that n, > n,_, and that (A 5) holds, for this value of &.
Finally, we choose a; in 0 < o, < f, and so small that (A 4) holds.

When {n,, 2, £} have been chosen in this way we define

d pGm =1 (A6)

~ logn,’

pla) = p(By)
We then complete the definition of p(«) by linear interpolation between the values

e Oy Prs Qs wees Brs 5T

for which it is given by (A 6). Beyond m, p(a) will be constant; and p(0) = 0. Evidently
this function p(«) increases monotonically from 0 to 1 as « increases from 0 to 7. Evidently,
also, p(a) is continuous in the closed interval (0, 7). But

A, = (f“k+j’3"+ " [7) B (cosa) dple)
0 ar Pk i

B (.[:kJrf:)P"k (cosa) dp(e), by (A6),

2% f:"dp(@— f: J( 2in ﬂk)dp(oc), by (A4) and (30),
1 4 1

NS
1

2logn, logn, logn,’

by (A 5) and (A 6). This establishes (37) with the refinement that the n, form a subsequence
of a sequence {Ny} given in advance.

Any such p(a), without the refinement, defines a random walk which, applied to the con-
centrated distribution (17), will never produce convergence. The refinement is needed to
obtain a similar result with a bounded p,,.

Suppose that p, is a bounded axially symmetric distribution

po = ey Py(cost),

and that cy > N? (A7-1)
(not for all N but) for an infinity of values of ¥,
N=N,N,, ... (A7-2)

with some fixed § > 0. Then we can find p(«) such that the series for p, will not converge,
for any ¢, at 6 = 0.

In constructing p, we shall include a similar refinement; we suppose an increasing
sequence {v,} given in advance and shall arrange that

{N¢} is a subsequence of {v,}. (A8)

Thus, given either a p(«) satistfying (37) or a p, satisfying (A 7), we can choose the other in
such a way that the series for p, never converges at # = 0. Moreover, if we are given a p(a)
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satisfying (37) we can, by superposing such distributions p, with different axes, obtain a
bounded distribution p, such that p, diverges for every ¢ at every one of any given finite or
enumerably infinite set of points on the sphere.

We need, not a bound for P, as in (30), but an approximate form for it. This may be
obtained by the same deformation of the contour of integration as used for (30): it is

P(cos0) = A/[n_%l—?]{cos{%w—(w%)ano( ! )} (A9)

nsin

It shows that P, is precisely of the order given by (30) for most «, namely except where the
cosine is small.

Given {v,}, we shall choose, for each integer K, an integer N taken from the sequence
{v.}, and an interval (ag, fy) satisfying (A 2) and with | < 4 as before. We shall put p, = 0
outside these intervals. In (ag,fy) we shall put p, = 1 or p, = 0 according as

cos {gm— (Ny+4) ¢}
is positive or not. And we take  ax = Ng¢, [ = 2ay,

where ¢ is a fixed positive number less than 1. Then the contribution of the interval (o, fx) to
ey = (Ne+1) f " py Py (cos6) sin §d0
0

) = 8—8 \iise
is Sy M. (A10)

We arrange that the other contributions to ¢y _are relatively small, and therefore leave
¢y, itself approximately equal to (A 10), merely by making the Ny increase sufficiently fast.
Because the mean value of the cosine in (A 9) is zero, the contribution of (S, m) to ¢y, is

O (Nt Ni=ie),
while the contribution of (0,a) to ¢y _is
O(Ng Ng29)-
The desired end is achieved by making Ny, > Ng for all large K, where the constant ¢ is

chosen so that
> 1 c>§+l
€5 4 ¢

of which the second implies the first. From (A 10) we see now that we can satisfy (A7),
with a bounded p,, for any ¢ < 3.

Evidently we can achieve a like result with a distribution p, continuous at # = 0 (where
its value will be zero) and possessing as many derivatives elsewhere as we choose to require.
And since our p, is non-negative we can turn it into a probability distribution by applying
a suitable constant factor.

AprpPENDIX B

In this appendix we derive properties of a space in which random walks commute. As
a first step, we shall endeavour to expand

1 p(r)ds 1 ,
; e = N A d B 1
P50 =6 ) e O, 1) ~ O g (B

in a power series in « whose coefficients are functions of r.
43-2
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Set up an affine normal co-ordinate system y* with r as base-point (cf. Veblen 1927, chap. 6).
Then the geodesics through r may be written

¥ — b, (B2)
where ¢ is the unit contravariant tangent vector at r and « is the arc length measured from r.
Expand p(r’) as a Taylor series in %, the coefficients being the affine extensions of p(r) at r
(cf. Ruse 19305) 1
p(r) = p(r) +yoi(T) + 574y py (1) + ... (B3)
It will be convenient temporarily to specialize the co-ordinate system still further to
hat N .
secure tha gij(r) - gz](r) — 517’ fi — @'- (B 4)
The ¢ are then direction cosines and satisfy
03 +-03+ ... +0%2 = 1. (B5)

This choice of co-ordinates frees superfixes for use as exponents in the following analysis:
the co-ordinates may be called pseudo- Euclidean co-ordinates with r as base point.

Denote by M, ,,..,, the average value of 071032 ... 072 over all possible directions,

M g0y = _Q U(?’fl 03 ... 0rdw, (B 6)
where U denotes the unit-sphere (B 5) and dw is the element of ¢ dimensional angle. It is
clear that A, ,, , vanishes if any 7, is odd: let us write

m=2, 2 V=V, n=2=73mn, (B7)

and we expect to be concerned only with integral values of v,, ».
To evaluate the quantities M we use a generating-function method. Consider the integral

1) = 1= | exp[S &y~ ol dydy,...dy, (B5)

taken over the space Y of all real values of the ;. Expanding the integrand in powers of the

£ we get g
E(H )feﬁﬁﬂwﬁ%
(”l) 7 Y

n,!

= () e e

(fh) ni *

3 (1) (5 (). 5

(ni) it
But, by a change of origin in (B 8), we find

I — qha et5E},

Equating coefficients here and in (B9) we see that M, .n, Vanishes unless the 7; are all
even, when, with the convention (B7),

-1

Lzg) pym! (B10)

mww*n+%) it

13


http://rsta.royalsocietypublishing.org/

/|
A X

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
,’,/ A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

RANDOM WALK ON A SPHERE 353

Now the expansion (B 3) inserted in (B 1) gives us

— g%
o5 a) = o, L, (I155) p(r), (B11)

(ni

where 9, denotes d/dy;. Substituting from (B 10) we get

P = 3 it e oy, (B12)
G (La2) A, p(1), (B13)

N r=0 ;'MI‘U—I" %Q)
say. Forv = 1 this notation agrees with the accepted notation A, for the Beltrami differential

operator, denoted by V2 in our work. Returning to a general affine normal co-ordinate
system with r as base-point, i.e. abandoning the special restrictions (B 4)

By, p(r) = G191 g2 . @vv Py 1oy (T (B14)
which expresses A,,p as a contraction of an affine extension of p.
The operator A,, is, as (B 12) shows, in a certain sense a power of A,, but not in the strict
sense. In fact, if we define P
A, = g¥(r) W’
where it is understood that ¢, y/ are affine normal co-ordinates, with r as base-point, of a
general point r’ in some neighbourhood of r, then
A p(r) = [Ny p(r) e (B15)

From (B13) we can immediately write down the effect of a random step of length «
followed by a random step of length . If we write

__Ge .
v T+ 4g)
it s pEGE) = 3 3D, D, ,a¥Ay A p(r). (B16)
1=0 p=0

The condition that these random steps commute, for all values of « and f, is that
AgpBo,p(t) = Dy, Agp(1) (B17)
for all # and v: and if this is to hold for all distributions p then
the operators A,, commute. (B18)

Theabove analysisfor random steps of fixed length « generalizes at once to problems with
the third extension, the power a? being replaced by the 2vth moment

o = foc?”dp(a)

of the distribution of «. The change has no effect on the argument leading to (B18) as the
condition for commutability. Our analysis assumes p(r) analytic: but this restriction can
be removed. But it also assumes the manifold of class C¢, i.e. the metric g; analytic. If this
is not given, the conditions (B 18) are necessary for commutability, so far as they have sense,
but it is not proved that they are sufficient.
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AprpeEnDIX C

We suppose given an analytic closed Riemannian manifold. The whole manifold is
covered by a finite number of regions: each of these regions possesses a local co-ordinate
system: the transformation from one local co-ordinate system to another local co-ordinate
system is analytic in the overlap in which both systems apply: and the components of the
metric tensor g; in any one of these co-ordinate systems are analytic functions of those
co-ordinates in the region in which those co-ordinates apply. Only analytic transformations
of co-ordinates are allowable.

We suppose also that the metric is such that equation (127) holds everywhere, i.e.
equation (B 17) holds at any point r for any function of position p defined in the neighbour-
hood of r and differentiable at r the relevant number of times.

We are to prove that any two random steps commute. This is to apply for any ‘distribu-
tion’ in our sense, i.e. for any bounded additive function of Borelian sets £, not merely for

those given by the integral f pdV of a true density p.
E

The first stage is to prove the result locally for locally analytic densities.

The second stage removes the restriction to analytic densities, but the lengths «, § of the
two steps will still be restricted to values sufficiently small.

The final stage removes this restriction to small values of « and /.

Consider then a point r; of the manifold and set up pseudo-Euclidean co-ordinates (y;)
with this point as origin. A region |y| < & in the Cartesian space Y of co-ordinates (y;) is
mapped (1-1) analytically on a certain neighbourhood of r,.

Any point y in Y determines a corresponding point r, on the manifold, and whatever
co-ordinate system (x;) be allowable in the neighbourhood of r,, those co-ordinates x; are
analytic functions of the y;, but there may be points at which the y; are not analytic functions
of the x;, since the Jacobian d(x;)/d(y;) may vanish.

Corresponding to the pseudo-Euclidean co-ordinates y; we have a set of ¢ orthonormal
tangent vectors ¢; at r,. Parallel transport of these along the geodesic represented in ¥ by
the radius from 0 to y will produce a set of ¢ orthonormal tangent vectors ¢;, at r,. We use
these vectors ¢;, at r, as the unit vectors of a set of pseudo-Euclidean co-ordinates (z;)
with the point r, as origin. As before, there is a region |z| < d in the Cartesian space Z of
co-ordinates (z;) which is mapped (1-1) analytically on a certain neighbourhood of r,.
Any point z in Z determines a corresponding point r,, on the manifold. Whatever co-
ordinate system (x;) be allowable in the neighbourhood of r,,, those co-ordinates x; are
analytic functions of the 2¢4 variables

Ybs woos Ygs Z1s o5 Zg
To be analytic in (y,z) at (y’,2z) is to be equal, in some neighbourhood of (y',2z’), to a
multiple Taylor series about (y', z'). The statement that the co-ordinates of r,, are analytic
functions of the 2¢ variables (y;, z,) may be proved, without going outside the real field, by
a discussion of the relevant power series, their convergence, and the effect of transforming
to a different set of local co-ordinates: the proof on such lines would be cumbersome.
A different proof is obtained if we consider the given manifold as embedded in one in which
the allowable co-ordinates x;, and hence also the y; and z,, are allowed to take complex

25
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values, albeit confined to small values of the imaginary part. The metric components g;; lose
their metric significance in the wider field, and will in general assume complex values. It
is sufficient to prove that the first derivatives dx;/dy;, dx;/0z, exist in this wider field in order
to infer that x; is an analytic function of the 2¢ complex variables y;, z;.

The density p(r,; @, f) produced at r, by two random steps of lengths «, £ is simply the
average of p(r,,) over the locus given by

ly|? = y3+...+y2 = F? (C1)
|z|2 =z} +...+22 = o (C2)
If p(r) is analytic at r, then p(r,,) is analytic in the variables (y;, z;) at (0,0). For « and f

sufficiently small, it is expressible as a multiple power series in the y;, z,. The standard
theorems on integration of uniformly convergent series enable us to integrate over (C2)
term by term: this gives (B 13) with r, for r, and the assurance that the individual terms are
themselves uniformly convergent power series in the y;. Finally, integration term by term
over the locus (C 1) gives the double power series (B16), with the assurance that it does
converge for sufficiently small «, f. Thus

p(T0; % F) = p(To; fra)

for any p(r) which is analytic at r, and for sufficiently small , £. This completes the first
stage. We remark that the bounds applied to @ and f arise from two causes, the geometry of
the manifold and the nature of p(r). Fundamentally we are concerned with substituting

X; = power series in y;, z, (G3)
into an expansion p = power series in x;, (C4)

where now for the moment the x; are allowable co-ordinates with r as origin. The series in
(C 8) is dominated by some X;(a, §), i.e. the sum of the moduli of its terms is less than X;(a, £) ;
and a, f must be taken so small that not only are the X, finite but that the series in (C 4) is
absolutely convergent, and equal to p, for all (x,) satisfying |x;| < X.

In the second stage we apply the above with locally analytic densities p which ‘approxi-
mate’ to a Dirac J-function d(r, r,). It is sufficient to consider

p= A e—-Bsz,

where s is the shortest geodesic distance from r|, B tends to infinity, and the constant 4 is
so adjusted that the integral of p over the region in which it differs appreciably from zero
shall be approximately unity, i.e.

A ~ (B/m)¥, B->o0.

We infer commutativity for steps of lengths «, § sufficiently small as applied to an initial
distribution given by a Dirac d-function. The bound that remains on «, § depends simply
on the geometry of the manifold. The restriction previously depending on the analytic
character of p now depends simply on that of s2.

Commutativity, subject to these restrictions on « and f, follows for an arbitrary initial
distribution from commutativity for an initial J-distribution by the obvious device of super-
position. This completes the second stage.
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Consider now the distributions p'(r), p”(r) formed from an initial J-distribution at r,
by a step of length £ followed by one of length « and by a step of length « followed by one of
length /. The former is obtained by superposing

charge dw,dw,/Q? at r

yz

for all pairs of elementary solid angles dw,, dw, on the loci (C 1), (C2). Thus

| P8 aV = | [4(r,.) do,do, /2. (C5)

Since r,, is analytic in y;, z, and since ¢,(r) is analytic (the manifold being analytic), it
follows that the right-hand member of (C 5) is analytic in «, /. So also therefore is the left-
hand member: and for like reason

| pE) g,y (Go)

is analytic in a, /. Since (C5) and (C 6) are both analytic in « and f, and identically equal
for small (o, /), it follows that they are equal for all «, f. Since this is true for each 7, and
since the ¢, are a complete system, it follows that

p'(r) = p"(r).
And since steps of arbitrary length commute when applied to an initial J-distribution, it
follows by superposition that they commute for an arbitrary initial distribution.
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